2,692 research outputs found

    Ultraviolet modifications of dispersion relations in effective field theory

    Full text link
    The existence of a fundamental ultraviolet scale, such as the Planck scale, may lead to modifications of the dispersion relations for particles at high energies, in some scenarios of quantum gravity. We apply effective field theory to this problem and identify dimension 5 operators that do not mix with dimensions 3 and 4 and lead to cubic modifications of dispersion relations for scalars, fermions, and vector particles. Further we show that, for electrons, photons and light quarks, clock comparison experiments bound these operators at 10^{-5}/Mpl.Comment: Version to appear in Phys.Rev.Let

    Space as a low-temperature regime of graphs

    Full text link
    I define a statistical model of graphs in which 2-dimensional spaces arise at low temperature. The configurations are given by graphs with a fixed number of edges and the Hamiltonian is a simple, local function of the graphs. Simulations show that there is a transition between a low-temperature regime in which the graphs form triangulations of 2-dimensional surfaces and a high-temperature regime, where the surfaces disappear. I use data for the specific heat and other observables to discuss whether this is a phase transition. The surface states are analyzed with regard to topology and defects.Comment: 22 pages, 12 figures; v3: published version; J.Stat.Phys. 201

    Rapid Assessment of Intracytoplasmic Membranes in Bacteria by Fluorescence Microscopy

    Get PDF

    Quantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003

    Get PDF
    Strong perturbations of the Arctic stratosphere during the winter 2002/2003 by planetary waves led to enhanced stretching and folding of the vortex. On two occasions the vortex in the lower stratosphere split into two secondary vortices that re-merged after some days. As a result of these strong disturbances the role of transport in and out of the vortex was stronger than usual. An advection and mixing simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS) utilising a suite of inert tracers tagging the original position of the air masses has been carried out. The results show a variety of synoptic and small scale features in the vicinity of the vortex boundary, especially long filaments peeling off the vortex edge and being slowly mixed into the mid latitude environment. The vortex folding events, followed by re-merging of different parts of the vortex led to strong filamentation of the vortex interior. During January, February, and March 2003 flights of the Russian high-altitude aircraft Geophysica were performed in order to probe the vortex, filaments and in one case the merging zone between the secondary vortices. Comparisons between CLaMS results and observations obtained from the Geophysica flights show in general good agreement. Several areas affected by both transport and strong mixing could be identified, allowing explanation of many of the structures observed during the flights. Furthermore, the CLaMS simulations allow for a quantification of the air mass exchange between mid latitudes and the vortex interior. The simulation suggests that after the formation of the vortex was completed, its interior remaind relatively undisturbed. Only during the two re-merging events were substantial amounts of extra-vortex air transported into the polar vortex. When in March the vortex starts weakening additional influence from lower latitudes becomes apparent in the model results. In the lower stratosphere export of vortex air leads only to a fraction of about 5% polar air in mid latitudes by the end of March. An upper limit for the contribution of ozone depleted vortex air on mid-latitude ozone loss is derived, indicating that the maximum final impact of dilution is on the order of 50%

    What causes the irregular cycle of the atmospheric tape recorder signal in HCN?

    Get PDF
    Variations in the mixing ratio of long-lived trace gases entering the stratosphere in the tropics are carried upward with the rising air with the signal being observable throughout the tropical lower stratosphere. This phenomenon, referred to as "atmospheric tape recorder" has previously been observed for water vapor, CO2, and CO which exhibit an annual cycle. Recently, based on Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) satellite measurements, the tape recorder signal has been observed for hydrogen cyanide (HCN) but with an approximately two-year period. Here we report on a model simulation of the HCN tape recorder for the time period 2002-2008 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The model can reproduce the observed pattern of the HCN tape recorder signal if time-resolved emissions from fires in Indonesia are used as lower boundary condition. This finding indicates that inter-annual variations in biomass burning in Indonesia, which are strongly influenced by El Nino events, control the HCN tape recorder signal. A longer time series of tropical HCN data will probably exhibit an irregular cycle rather than a regular biannual cycle. Citation: Pommrich, R., R. Muller, J.-U. Grooss, G. Gunther, P. Konopka, M. Riese, A. Heil, M. Schultz, H.-C. Pumphrey, and K. A. Walker (2010), What causes the irregular cycle of the atmospheric tape recorder signal in HCN?, Geophys. Res. Lett., 37, L16805, doi:10.1029/2010GL044056

    Curved geometry and Graphs

    Full text link
    Quantum Graphity is an approach to quantum gravity based on a background independent formulation of condensed matter systems on graphs. We summarize recent results obtained on the notion of emergent geometry from the point of view of a particle hopping on the graph. We discuss the role of connectivity in emergent Lorentzian perturbations in a curved background and the Bose--Hubbard (BH) model defined on graphs with particular symmetries.Comment: are welcome. 4pp, 2 fig. Proceedings of Loops'11 Conference, Madri

    Modelling the many-body dynamics of heavy ion collisions: Present status and future perspective

    Get PDF
    Basic problems of the semiclassical microscopic modelling of strongly interactingsystems are discussed within the framework of Quantum Molecular Dynamics (QMD). This model allows to study the influence of several types of nucleonic interactions on a large variety of observables and phenomena occurring in heavy ion collisions at relativistic energies.It is shown that the same predictions can be obtained with several -- numerically completely different and independently written -- programs as far as the same model parameters are employed and the same basic approximations are made. Many observables are robust against variations of the details of the model assumptions used. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei,which differs among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given.Comment: 39 pages, 12 figure

    Direct experimental observation of binary agglomerates in complex plasmas

    Full text link
    A defocusing imaging technique has been used as a diagnostic to identify binary agglomerates (dimers) in complex plasmas. Quasi-two-dimensional plasma crystal consisting of monodisperse spheres and binary agglomerates has been created where the agglomerated particles levitate just below the spherical particles without forming vertical pairs. Unlike spherical particles, the defocused images of binary agglomerates show distinct, stationary/periodically rotating interference fringe patterns. The results can be of fundamental importance for future experiments on complex plasmas

    Simulation of denitrification and ozone loss for the Arctic winter 2002/2003

    Get PDF
    We present simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the Arctic winter 2002/2003. We integrated a Lagrangian denitrification scheme into the three-dimensional version of CLaMS that calculates the growth and sedimentation of nitric acid trihydrate (NAT) particles along individual particle trajectories. From those, we derive the HNO3 downward flux resulting from different particle nucleation assumptions. The simulation results show a clear vertical redistribution of total inorganic nitrogen (NOy), with a maximum vortex average permanent NOy removal of over 5 ppb in late December between 500 and 550 K and a corresponding increase of NOy of over 2 ppb below about 450 K. The simulated vertical redistribution of NOy is compared with balloon observations by MkIV and in-situ observations from the high altitude aircraft Geophysica. Assuming a globally uniform NAT particle nucleation rate of 3.4·10&#8722;6 cm&#8722;3 h&#8722;1 in the model, the observed denitrification is well reproduced. In the investigated winter 2002/2003, the denitrification has only moderate impact (<=10%) on the simulated vortex average ozone loss of about 1.1 ppm near the 460 K level. At higher altitudes, above 600 K potential temperature, the simulations show significant ozone depletion through NOx-catalytic cycles due to the unusual early exposure of vortex air to sunlight

    The impact of transport across the polar vortex edge on Match ozone loss estimates

    Get PDF
    The Match method for the quantification of polar chemical ozone loss is investigated mainly with respect to the impact of the transport of air masses across the vortex edge. For the winter 2002/03, we show that significant transport across the vortex edge occurred and was simulated by the Chemical Lagrangian Model of the Stratosphere. In-situ observations of inert tracers and ozone from HAGAR on the Geophysica aircraft and balloon-borne sondes, and remote observations from MIPAS on the ENVISAT satellite were reproduced well by CLaMS. The model even reproduced a small vortex remnant that remained a distinct feature until June 2003 and was also observed in-situ by a balloon-borne whole air sampler. We use this CLaMS simulation to quantify the impact of transport across the vortex edge on ozone loss estimates from the Match method. We show that a time integration of the determined vortex average ozone loss rates, as performed in Match, results in a larger ozone loss than the polar vortex average ozone loss in CLaMS. The determination of the Match ozone loss rates is also influenced by the transport of air across the vortex edge. We use the model to investigate how the sampling of the ozone sondes on which Match is based represents the vortex average ozone loss rate. Both the time integration of ozone loss and the determination of ozone loss rates for Match are evaluated using the winter 2002/2003 CLaMS simulation. These impacts can explain the majority of the differences between CLaMS and Match column ozone loss. While the investigated effects somewhat reduce the apparent discrepancy in January ozone loss rates reported earlier, a distinct discrepancy between simulations and Match remains. However, its contribution to the accumulated ozone loss over the winter is not large
    corecore